Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem

نویسندگان

  • Serdar Göktepe
  • Ellen Kuhl
چکیده

Thismanuscript is concernedwith anovel, unified finite element approach to fully coupled cardiac electromechanics. The intrinsic coupling arises from both the excitation-induced contraction of cardiac cells and the deformation-induced generation of current due to the opening of ion channels. In contrast to the existing numerical approaches suggested in the literature,which devise staggered algorithms through distinct numerical methods for the respective electrical and mechanical problems, we propose a fully implicit, entirely finite element-based modular approach. To this end, the governing differential equations that are coupled through constitutive equations are recast into the corresponding weak forms through the conventional isoparametric Galerkin method. The resultant non-linear weighted residual terms are then consistently linearized. The system of coupled algebraic equations obtained through discretization is solvedmonolithically. The put-forward modular algorithmic setting leads to an unconditionally stable and geometrically flexible framework that lays a firm foundation for the extension of constitutive equations towardsmore complex ionicmodels of cardiac electrophysiology and the strain energy functions of cardiac mechanics. The performance of the proposed approach is demonstrated through three-dimensional illustrative initial boundary-value problems that include a coupled electromechanical analysis of a biventricular generic heart model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fully implicit finite element method for bidomain models of cardiac electromechanics.

We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The ...

متن کامل

A Fully Coupled Model for Electromechanics of the Heart

We present a fully coupled electromechanical model of the heart. The model integrates cardiac electrophysiology and cardiac mechanics through excitation-induced contraction and deformation-induced current. Numerical schemes based on finite element were implemented in a supercomputer. Numerical examples were presented using a thin cardiac tissue and a dog ventricle with realistic geometry. Perfo...

متن کامل

The importance of mechano-electrical feedback and inertia in cardiac electromechanics.

In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-el...

متن کامل

An Electromechanical Left Ventricular Wedge Model to Study the Effects of Deformation on Repolarization during Heart Failure

Heart failure is a major and costly problem in public health, which, in certain cases, may lead to death. The failing heart undergo a series of electrical and structural changes that provide the underlying basis for disturbances like arrhythmias. Computer models of coupled electrical and mechanical activities of the heart can be used to advance our understanding of the complex feedback mechanis...

متن کامل

Integrative Systems Models of Cardiac Excitation–Contraction Coupling Alternans and Arrhythmias: From Cells to the Heart Computational Models Reduce Complexity and Accelerate Insight Into Cardiac Signaling Networks Whole Heart Modeling: Applications to Cardiac Electrophysiology and Electromechanics

Excitation–contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca transport. The complexity and integrative nature of heart cell electrophysiology and Ca cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems bio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009